Math, asked by ak314327, 10 months ago

If aplha and beta are the roots of x²=x+1 then value of alpha²/beta - beta²/alpha is ​

Answers

Answered by omgyyhg2003
6

Answer:

-2√5

Step-by-step explanation:

step by step explanation is given below hope you like it. plz rate my answer

Attachments:
Answered by kaushik05
23

p(x) =

 {x}^{2}  - x - 1 = 0

Here, a=1 ,b=-1and c=-1

As we know that,

 \alpha  +  \beta  =  \frac{ - b}{a }  =  \frac{ - ( -1 )}{1}  = 1

and

 \alpha  \beta  =  \frac{c}{a}  =  \frac{ - 1}{1}  =  - 1

To find

 \frac{ { \alpha }^{2} }{ \beta }   -  \frac{ { \beta }^{2} }{ \alpha }  \\  =  >  \frac{ { \alpha }^{3} -  { \beta }^{3}  }{ \alpha  \beta }   \\  =  >  \frac{( \alpha  -  \beta )( { \alpha }^{2} +  { \beta }^{2}   +  \alpha  \beta )}{ \alpha  \beta }

 =  >  \frac{ \sqrt{( \alpha  +  \beta ) ^{2} - 4 \alpha  \beta  } ( ( \alpha  +  \beta ) ^{2} - 2 \alpha  \beta    +  \alpha  \beta )}{ \alpha  \beta }  \\  =  >  \frac{ \sqrt{ {1}^{2} - 4( - 1) } (1^{2} - 2( -1) + ( - 1) }{ - 1}  \\  =  >  \frac{ \sqrt{5}(2) }{ - 1}  \\  =  >  - 2 \sqrt{5}

Hence the value is

 \boxed{ \red{ - 2 \sqrt{5} }}

Similar questions