Math, asked by sid77776, 1 month ago

If aplha and Beta are the zeroes of quadratic polynomial 3x2 + 2x - 7, then the value of (alpha+ 3)(beta+ 3) is ​

Answers

Answered by XxIndianpilotxX
11

given \: quadratic \: polynomial \: p(x) = 3 {x}^{2}  + 2x - 7 \\  \\ on \: comparing \: with \:   a {x}^{2}  + bx  +  c  \\ \\  \: we \: have \: a = 3,b  = 2,c =  - 7 \\  \\ if \:  \alpha  ,\beta \:  are \: zeroes \: ,then \:  \\  \\ sum \: of \: the \: zeroes \: ( \alpha  +  \beta ) =   \frac{ - b}{a}  \\ :• \alpha  +  \beta  =  \frac{ - 2}{3}  \\  \\ product \: of \: zeroes( \alpha  \beta ) =  \frac{c}{a }  \\  :• \alpha  \beta  =   \frac{ - 7}{3}  \\  \\ now( \alpha  - 3)( \beta  - 3) =  \alpha  \beta  - 3 \beta  - 3 \alpha  + 9 \\  \\   =  \alpha  \beta  - 3( \alpha  +  \beta ) + 9 \\  \\  =   \frac{ - 7}{3}  - 3( \frac{ - 2}{3} ) + 9 \\  \\we \: cut \: three \: number \: because \: it \: is \: common \\  \: in \: numerator \: and \: denominator. \:   \\  \\  =   \frac{ - 7}{3}  - ( - 2) + 9 \\  \\  =  \frac{ - 7}{3} + 2 + 9 \\  \\  =  \frac{ - 7}{3}  + 11 \\  \\  =   \frac{ - 7 + 33}{3}  \\  \\   :• ( \alpha  - 3)( \beta  - 3) =  \frac{26}{3} \:  \:  \:  ans.

Similar questions