If α, β are complementary angles such that b sin α = a, then find the value of (sin α cosβ - cos α sinβ).
Answers
Answered by
64
α, β are complementary angles.
so, the sum of α and β = 90°
e.g.,
given,
so,
then,
then, ........(1)
and also, ......(2)
now,
from equations (1) and (2),
=
=
= (a/b)² - {(√b² - a²)/b}²
= a²/b² - (b² - a²)/b²
= (a² - b² + a²)/b²
= (2a² - b²)/b²
so, the sum of α and β = 90°
e.g.,
given,
so,
then,
then, ........(1)
and also, ......(2)
now,
from equations (1) and (2),
=
=
= (a/b)² - {(√b² - a²)/b}²
= a²/b² - (b² - a²)/b²
= (a² - b² + a²)/b²
= (2a² - b²)/b²
Answered by
32
HELLO DEAR,
GIVEN:- α and β are the complimentary angle's so, α + β = 90
AND, bsinα = a
=> sinα = a/b
thus, cosα = √{1 - a²/b²}
=> cosα = √{(b² - a²)/b²}
also, sinβ = sin(90 - α) = cosα
similarly, cosβ = sinα
so, sin²α - cos²α
=> (a/b)² - {√(b² - a²)/b}²
=> a²/b² - (b² - a²)/b²
=> (a² - b² + a²)/b²
=> (2a² - b²)/b²
I HOPE IT'S HELP YOU DEAR,
THANKS
GIVEN:- α and β are the complimentary angle's so, α + β = 90
AND, bsinα = a
=> sinα = a/b
thus, cosα = √{1 - a²/b²}
=> cosα = √{(b² - a²)/b²}
also, sinβ = sin(90 - α) = cosα
similarly, cosβ = sinα
so, sin²α - cos²α
=> (a/b)² - {√(b² - a²)/b}²
=> a²/b² - (b² - a²)/b²
=> (a² - b² + a²)/b²
=> (2a² - b²)/b²
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions