Prove that = -2.
Answers
Answered by
8
we know, sin(π - x) = sinx
so, sin150° = sin(180° - 30°) = sin30° = 1/2
cos(2π - x) = cosx
so, cos300° = cos(360° - 60°) = cos60° = 1/2
tan(π + x) = tanx
so, tan225° = tan(180° + 45°) = tan45° = 1
tan(π - x) = -tanx
so, tan135° = tan(180° - 45°) = -tan45° = -1
sin(π + x) = -sinx
so, sin210° = sin(180° + 30°) = -sin30° = -1/2
now, LHS = (sin150° - 5cos300° + 7tan225°)/(tan135° + 3sin210° )
= (1/2 - 5 × 1/2 + 7)/(-1 + 3 × -1/2)
= (-2 + 7)/(-5/2)
= 5/(-5/2)
= -2 = RHS
so, sin150° = sin(180° - 30°) = sin30° = 1/2
cos(2π - x) = cosx
so, cos300° = cos(360° - 60°) = cos60° = 1/2
tan(π + x) = tanx
so, tan225° = tan(180° + 45°) = tan45° = 1
tan(π - x) = -tanx
so, tan135° = tan(180° - 45°) = -tan45° = -1
sin(π + x) = -sinx
so, sin210° = sin(180° + 30°) = -sin30° = -1/2
now, LHS = (sin150° - 5cos300° + 7tan225°)/(tan135° + 3sin210° )
= (1/2 - 5 × 1/2 + 7)/(-1 + 3 × -1/2)
= (-2 + 7)/(-5/2)
= 5/(-5/2)
= -2 = RHS
Answered by
5
HELLO DEAR,
we know:-
sin(π - x) = sinx
so, sin150° = sin(180° - 30°) = sin30° = 1/2
cos(2π - x) = cosx
so, cos300° = cos(360° - 60°) = cos60° = 1/2
tan(π + x) = tanx
so, tan225° = tan(180° + 45°) = tan45° = 1
tan(π - x) = -tanx
so, tan135° = tan(180° - 45°) = -tan45° = -1
sin(π + x) = -sinx
so, sin210° = sin(180° + 30°) = -sin30° = -1/2
now,
{sin150° - 5cos300° + 7tan225°}/{tan135° + 3sin210°}
=> (1/2 - 5 × 1/2 + 7)/(-1 + 3 × -1/2)
=> (-2 + 7)/(-5/2)
=> 5/(-5/2)
=> -2
I HOPE IT'S HELP YOU DEAR,
THANKS
we know:-
sin(π - x) = sinx
so, sin150° = sin(180° - 30°) = sin30° = 1/2
cos(2π - x) = cosx
so, cos300° = cos(360° - 60°) = cos60° = 1/2
tan(π + x) = tanx
so, tan225° = tan(180° + 45°) = tan45° = 1
tan(π - x) = -tanx
so, tan135° = tan(180° - 45°) = -tan45° = -1
sin(π + x) = -sinx
so, sin210° = sin(180° + 30°) = -sin30° = -1/2
now,
{sin150° - 5cos300° + 7tan225°}/{tan135° + 3sin210°}
=> (1/2 - 5 × 1/2 + 7)/(-1 + 3 × -1/2)
=> (-2 + 7)/(-5/2)
=> 5/(-5/2)
=> -2
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions