If α,β are roots of eqn x^2−2x+3=0 then find the an eqn whose roots are α^3−3α^3+5α−2,β^3−β^2+β+5
Answers
Answered by
0
Explanation:
Answer
Given α & β are the roots of equation x
2
−2x+3=0
To find: Equation whose roots are α
3
−3α
2
+5α−2,
β
3
−β
2
+β+5
Sol: x
2
−2x+3=0
x=
2
2±
4−12
x=
2
2±
8i
x=1±
2
i
α=1+
2
i, β=1−
2
i
α
3
−3α
2
+5α−2=(1+
2
i)
3
−3(1+
2
i)
2
+5(1+
2
i)−2
=1+2
2
i
3
+3
2
i(1+
2
i)−3(1+2i
2
+2
2
i)+5+5
2
i−2
=1−2
2
i+3
2
i−6−3+6−6
2
i+3+5
2
i
=1+
2
i−
2
i
=1
β
3
−β
2
+β+5=(1−
2
i)
3
−(1−
2
i)
2
+(1−
2
i)+5
=1−(
2
i)
3
−3
2
i(1−
2
i)−(1+2i
2
−2
2
i)+(1−
2
i)+5
=2
∴ Equation whose roots are α
3
−3α
2
+5α−2 and β
3
−β
2
+β+5 is (x−1)(x−2)=0
⇒x
2
−3x+2=0
∴ x 2
−3x+2=0.
Similar questions