Math, asked by sas5, 1 year ago

If α, β, γ are roots of equation x3 +px + q = 0

Answers

Answered by sharinkhan
3
α³+β³+γ³=3q−p(α+β+γ)
=3q−p(0)=3q
(α+β)(β+γ)(γ+α)=(α+β+γ)³−(α³+β³+γ³)³/3
=0
³p³−3q³/3
αβγ=−q, and also αβ+βγ+γα=p
Answered by SrijanShrivastava
1

 \sf If \:  \alpha, \beta , and  \:  \gamma \: are \: roots \: of \: f(x)

f(x) =  \sf  {x}^{3}  + px + q = 0

Thus,

The Relations between the roots and the coefficients are:

 \alpha  +  \beta  +  \gamma = 0

 \alpha \beta +  \alpha \gamma  +  \beta \gamma = p

 \alpha \beta \gamma =  - q

And, the values of the three roots are:

________________________________________________________

  \\ \sf \alpha =  \sqrt[3]{ -  \frac{q}{2} +  \sqrt{(\frac{q}{2} ) {}^{2}  +  {( \frac{p}{3}  ) {}^{3} }}  }  + \:   \sf  \sqrt[3]{ -  \frac{q}{2}  -   \sqrt{(\frac{q}{2} ) {}^{2}  +  {( \frac{p}{3}  ) {}^{3} }}  }

________________________________________________________

 \sf\beta =  \sqrt[3]{   \frac{q}{16} +  \sqrt{ (\frac{q}{16} )^{2} +   { (\frac{p}{12}  ) {}^{3} }}  }+  \sqrt[3]{   \frac{q}{16}  -   \sqrt{ (\frac{q}{16} )^{2}   +   { (\frac{p}{12}  ) {}^{3} }}  }   \\   \sf   +  \it{i} \sf\frac{ \sqrt{3} }{2}   (\sqrt[3]{   \frac{q}{16} +  \sqrt{ (\frac{q}{16} )^{2} +   { (\frac{p}{12}  ) {}^{3} }}  } - \sqrt[3]{   \frac{q}{16}  -  \sqrt{ (\frac{q}{16} )^{2}  +   { (\frac{p}{12}  ) {}^{3} }}  })

________________________________________________________

 \sf\gamma=  \sqrt[3]{   \frac{q}{16} +  \sqrt{ (\frac{q}{16} )^{2} +   { (\frac{p}{12}  ) {}^{3} }}  }+  \sf \sqrt[3]{   \frac{q}{16}  -   \sqrt{ (\frac{q}{16} )^{2}   +   { (\frac{p}{12}  ) {}^{3} }}  }   \\   \sf    -   \it{i} \sf\frac{ \sqrt{3} }{2}   (\sqrt[3]{   \frac{q}{16} +  \sqrt{ (\frac{q}{16} )^{2} +   { (\frac{p}{12}  ) {}^{3} }}  } - \sqrt[3]{   \frac{q}{16}  -  \sqrt{ (\frac{q}{16} )^{2}  +   { (\frac{p}{12}  ) {}^{3} }}  })

________________________________________________________

where,

 \it{i} = \sf \sqrt{-1}

Slide To See The Full length answer→→→→

Similar questions