Math, asked by singhsss874408, 1 year ago

If α, β are roots of x²
– 3ax + a²= 0, find the value(s) of a if α² + β² =
7/
4​

Answers

Answered by brainer9657
15

{\star{\red{\boxed{\bold{\boxed{Answer}}}}}}{\star}

{\pink{1/4\: or\: -1/4}}

{\blue{Explanation}}

Find the value of \alpha+\beta and \alpha\beta from the polynomial

\alpha+\beta= -coefficient of x/ cofficient of x² = -(-3a)/1=3a

\alpha\beta=constant term / coefficient of x²=a²/1=a²

{\alpha}^{2}+{\beta}^{2} = 7/4

(\alpha+\beta)²-2\alpha\beta=7/4

Putting values of \alpha+\beta and \alpha\beta

(3a)²-2a²=7/4

9a²-2a²=7/4

7a²=7/4

a²=1/4 → a = 1/4 or -1/4

<marquee>HOPE IT HELPS✌✌</marquee>

Answered by avenger2004rutu
6

Answer:

a =   + \: or \:  -    \frac{ \sqrt{ 7} }{2}

Step-by-step explanation:

 {x}^{2}  - 3ax +  {a }^{2}  \\  \alpha   +  \beta  =  \frac{ - ( - 3a)}{1}  = 3a \\   \alpha  \beta  =  {a }^{2}  \\  \\

Now,

 { \alpha }^{2}  +   { \beta }^{2}  =  \frac{7}{4}  \\  \\  =  {( \alpha  +  \beta )}^{2}   - 2( \alpha  +  \beta ) =  \frac{7}{4}  \\  \\ 3 {a}^{2}  - 2 {a}^{2}  =  \frac{7}{4}  \\  \\  {a}^{2}  =  \frac{7}{4}  \\   \\ a =  +  \: or \:  -  \frac{ \sqrt{7} }{2}

I hope this will help you...

Similar questions