Math, asked by bahesh2006, 1 month ago

If α, β are the zeroes of quadratic polynomial x2-p(x+2)-c, then prove that (α+2) (β+2)- 4 +c = 0

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

The given polynomial is

\rm :\longmapsto\:Let \: f(x) =  {x}^{2} - p(x + 2) - c

can be rewritten as

\rm :\longmapsto\: f(x) =  {x}^{2} - px  -  2p - c

\rm :\longmapsto\: f(x) =  {x}^{2} - px  - ( 2p  + c )

Further it is given that

\rm :\longmapsto\: \alpha  \: and \:  \beta  \: are \: zeroes \: of \: f(x).

We know,

\boxed{\purple{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha + \beta =  - \dfrac{( - p)}{1} = p

Also,

\boxed{\pink{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha\beta = \dfrac{ - (2p + c)}{1} =  - 2p - c

Consider,

\rm :\longmapsto\:( \alpha  + 2)( \beta  + 2) - 4 + c

 \rm \:=  \: \: \alpha  \beta  + 2 \beta  + 2 \alpha  +\cancel 4 -\cancel 4 + c

 \rm \:=  \: \: - 2p -\cancel c + 2( \alpha  +  \beta)  +  \cancel c

 \rm \:=  \: \: - \cancel{2p} \:  + \:  \cancel {2p}

 \rm \:=  \: \:0

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

 \green{ \boxed{ \bf \:  {x}^{2} +  {y}^{2} =  {(x + y)}^{2} - 2xy \: }}

 \green{ \boxed{ \bf \:  {x}^{3} +  {y}^{3} =  {(x + y)}^{3} - 3xy(x + y) \: }}

 \green{ \boxed{ \bf \:  (x - y) =  \sqrt{ {(x + y)}^{2} - 4xy } \: }}

Similar questions