Science, asked by ItzYourHeartbeat, 2 months ago

If α,β are the zeroes of the polynomial
2x2-7x +k satisfying the condition
α2+β2+αβ= 67/4, then find the value of k
────────────────
Dont Spam # Quality Answer Need...
─────────────
No Need Copied Answer
Spammer will be report​

Answers

Answered by riya15955
1

Given :-

2x² - 7x + k

α² + β² + αβ = 67/4

Solution :-

We know that

Sum of zeroes = -b/a

We have

b = -7

a = 2

Sum of zeroes = -(-7)/2

Sum of zeroes = 7/2

Product of zeroes = c/a

c = k

a = 2

Product of zeroes = k/2

α² + β² + αβ = 67/4

α² + β² + (2αβ - αβ) = 67/4

Taking 2 as common

(α + β)² - αβ = 67/4

Putting all values

(7/2)² - (k/2) = 67/4

(7²/2²) - k/2 = 67/4

49/4 - k/2 = 67/4

49 - 2k/4 = 67/4

49 - 2k = 67

-2k = 67 - 49

-2k = 18

k = 18/-2

k = -18/2

k = -9/1

k = -9

Answered by VεnusVεronίcα
20

Given : \alpha,~\beta are the zeroes of the polynomial \sf 2x^2-7x+k, such that \sf\alpha^2+\beta^2+\alpha\beta=\dfrac{67}{4}.

To find : The value of k.

 \\

\qquad_______________

 \\

On comparing \sf2x^2-7x+k to \sf ax^2+bx+c, we get the values as :

 \:

\qquad\dashrightarrow~\sf a=2

  \qquad\dashrightarrow  \: \sf b =  - 7

 \qquad \dashrightarrow \:  \sf c = k

 \:

☀️ We know that :

 \:

Product of zeroes \alpha\beta = \sf \dfrac{c}{a}

 \qquad \dashrightarrow \:  \alpha  \beta  = \sf  \dfrac{k}{2}

 \:

Sum of zeroes \alpha+\beta = \sf\dfrac{-b}{a}

 \sf \qquad \dashrightarrow \:  \alpha  +  \beta  =  \dfrac{ - ( - 7)}{2}

 \sf \qquad \dashrightarrow \:  \alpha  +   \beta  =   \dfrac{7}{2}

 \:

☀️ According to the question :

 \:

 \sf \qquad \dashrightarrow \:  { \alpha }^{2}  +  { \beta }^{2}  +  \alpha  \beta  =  \dfrac{67}{4}

 \:

☀️ Here, squaring on both sides :

 \:

 \sf \qquad \dashrightarrow \:   { \bigg( \alpha  +  \beta  \bigg)}^{2}   =  { \bigg \lgroup \dfrac{7}{2}  \bigg \rgroup}^{2}

 \sf \qquad \dashrightarrow \:  { \alpha }^{2}  +  { \beta }^{2} + 2 \alpha  \beta   =  \bigg \lgroup \dfrac{49}{4}  \bigg \rgroup

 \pmb{ \sf \qquad \dashrightarrow \:  { \alpha }^{2}  +  { \beta }^{2}  +  \alpha  \beta  +  \alpha  \beta  =  \bigg \lgroup \dfrac{49}{4}  \bigg \rgroup}

 \:

☀️ Substituting the values :

 \:

 \sf \qquad \dashrightarrow \:  \bigg \lgroup \dfrac{67}{4}  \bigg \rgroup +  \bigg \lgroup  \dfrac{k}{2} \bigg  \rgroup =  \bigg \lgroup \dfrac{49}{4}  \bigg \rgroup

 \sf \qquad \dashrightarrow \:  \bigg \lgroup \dfrac{k}{2}  \bigg \rgroup =  \dfrac{49 - 67}{4}

 \sf \qquad \dashrightarrow \:  \dfrac{k}{2}  =  \bigg \lgroup \cancel\dfrac{ - 18}{4} \:   \bigg \rgroup

 \sf \qquad \dashrightarrow \:  \dfrac{k}{2}  = \bigg   \lgroup\dfrac{ - 9}{2}  \bigg \rgroup

 \pmb{ \sf \qquad \dashrightarrow \: k =  - 9}

 \:

Therefore, the value of k is -9.

Similar questions