Math, asked by sagarjadhav84, 11 months ago

If α,β are the zeros of the polynomial, x sq-px +36 and α sq + β sq = 9, then what is the value of p? *

1 point

6

9

3

8

Answers

Answered by Sudhir1188
16

ANSWER:

SO THE VALUE OF P = 9 OR (-9)

GIVEN:

α and β are the two zeros of polynomial

x {}^{2}  - px + 36

TO FIND:

Value of 'p'

SOLUTION:

Here;. a= 1 (coefficient of x^2) b= (-p) (coefficient of x)

c= 36 (constant term)

 \implies \: \alpha + \beta =  \frac{( - b)}{a}  \\  \implies \:  \alpha +  \beta=  \:   \frac{ - ( - p)}{1}  \\  \implies \:   \alpha +   \beta= p \\  \\  \implies \:   \alpha \times  \beta =  \frac{c}{a}  \\  \implies \:  \alpha \times  \beta =  \frac{36}{1}  \\  \implies \:  \alpha \times \beta= 36

Formula

 \implies \: x {}^{2}  + y {}^{2}  = (x + y) {}^{2} - 2xy

By using this formula:

 \implies \: \alpha{}^{2}  +\beta {}^{2}  = 9 \:  \:  \:  \:  \: (given) \\  \implies \: (\alpha+ \beta) {}^{2}  - 2\alpha\beta = 9 \\   \:  \:  \:  \:  \: putting \: the \: values \: we \: get \\  \implies \: (p) {}^{2}  - 2 \times 36 = 9 \\  \implies \: (p) {}^{2}  = 9 + 72 \\  \implies \: p \:  =  \sqrt{81}  \\  \implies \: p = 9 \: or \: ( - 9)

SO THE VALUE OF P = 9 OR (-9)

NOTE:

  • First of all we have to find the value of α+β and αβ.
  • Then put on the formula above given.
  • simplify it and find the value.
Similar questions