Math, asked by SharmaShivam, 1 year ago

If α, β are zeroes of x² - 6x + k. What is the value of k, if 3α - 2β = 20?

Answers

Answered by siddhartharao77
18

Answer:

-64/25

Step-by-step explanation:

Given Equation is x² - 6x + k.

Here, a = 1, b = -6, c = k.

Let α,β are the zeroes of the equation.

(i) Sum of zeroes:

α + β = -b/a

α + β = 6.


(ii) Product of zeroes:

αβ = k.


Given Equation is 3α - 2β = 20   ---- (iii)

On Solving (i) * 3 & (iii), we get

⇒ 3α + 3β = 18

⇒ 3α - 2β = 20

   -----------------

           5β = -2.

             β = -2/5


Substitute β = 2 in (iii), we get

⇒ 3α - 2β = 20

⇒ 3α - 2(-2/5) = 20

⇒ 3α + 4/5 = 20

⇒ 3α = 20 - 4/5

⇒ 3α = 96/5

⇒ α = 96/15

⇒ α = 32/5


Substitute α = 32/5, β = -2/5 in (ii), we get

αβ

= (32/5)(-2/5)

= -64/25.


Hope it helps!


SharmaShivam: Thanks Sir
SharmaShivam: Can you pls solve this one? In the given figure, express x in terms of p, q and r.
https://brainly.in/question/7562071
SharmaShivam: https://brainly.in/question/7562071?
Answered by Anonymous
4

  \huge  \underbrace{\boxed{ \bf\dag  \green{ Given} \dag }}

 \tt \alpha , \beta  \: are \: zeroes \: of \:  {x}^{2}  - 6x + k

 \tt3  \alpha  + 2 \beta  = 20

  \huge  \underbrace{\boxed{ \bf\dag  \red{ FIND} \dag }}

 \tt y = ?

  \huge  \underbrace{\boxed{ \bf\dag  \pink{ Solution} \dag }}

 \tt  {x}^{2}  - 6x + y \\  \tt  \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{ \cancel - ( \cancel - 6)}{1}  = 6.....(i) \\  \tt  \alpha  \beta  =  \frac{c}{a}  =  \frac{a}{1}  = k .....(ii) \\  \tt multipy \: eq(i) \: by3 \\  \tt 3( \alpha  +  \beta ) = 3(6) \\  \tt 3 \alpha  + 3 \beta  = 18.....(iii) \\  \tt given \: eq. \: is, \: 3 \alpha  + 2 \beta  = 20.....(iv) \\  \tt subtracting \: eq(iv)from(iii), \\  \tt 3 \alpha  + 3 \beta  = 18 \\  \tt    \underline{   - 3 \alpha   +   2 \beta  =    20} \\  \tt   \underline{ \:  \:  \:  \:  \beta  \:  \:   =  \:  \:  \:  \:  \:  \:  \:    - 2} \\  \tt from \: eq(i), - 2 +  \beta  = 6 \\ \tt  \implies \beta = 6 + 2 = 8  \\ \tt now, \: from \: eq(ii), \\  \tt  \alpha  \beta  = k \\  \tt \therefore k =  ( - 2)(8) =  - 16

 \underbrace{\boxed{ \bf  \purple{ Answer}}}

 \boxed{ \tt value \: of \: k \: is - 16.}

Similar questions