Math, asked by DivineAyush, 5 months ago

If area of a circle is 154cm2 then find its circumference.​

Answers

Answered by ashokc454
2

Answer:

please mark me as brilianist

Attachments:
Answered by BrainlyRish
3

Given : Area of circle is 154 cm² .

Need To Find : Circumference of Circle.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's consider Radius of Circle be r .

\frak {\underline {\dag As, \:We \:know\:that \::}}\\

\qquad \qquad \underline {\boxed {\sf{\bigstar Area_{(Circle)} = \pi r^{2}\:sq.units }}}\\

Where,

  • r is the Radius of Circle in cm and \pi =\dfrac{22}{7} and we have given with area of Circle is 154 cm² .

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

\qquad \qquad:\implies \sf{ 154 cm^2 = \dfrac{22}{7} \times r^{2}}\\

\qquad \qquad:\implies \sf{ 7 \times 7 =  r^{2}}\\

\qquad \qquad:\implies \sf{ 49 =  r^{2}}\\

\qquad \qquad:\implies \sf{ \sqrt {49} =  r^{2}}\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  r = 7\: cm}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Radius \:of\:Circle \:is\:7\: cm}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀Finding Circumference of Circle :

\frak {\underline {\dag As, \:We \:know\:that \::}}\\

\qquad \qquad \underline {\boxed {\sf{\bigstar Circumference _{(Circle)} =2 \pi r\:units }}}\\

Where,

  • r is the Radius of Circle in cm and \pi =\dfrac{22}{7}

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Found \: Values \::}}\\

\qquad \qquad:\implies \sf{ Circumference = 2 \times \dfrac{22}{7} \times 7 }\\

\qquad \qquad:\implies \sf{ Circumference = 2 \times \dfrac{22}{\cancel {7}} \times \cancel {7} }\\

\qquad \qquad:\implies \sf{ Circumference = 2 \times 22 }\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  Circumference = 44\: cm}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Circumference \:of\:Circle \:is\:44\: cm}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions