Math, asked by palpravesh97, 10 months ago

If area of similar traingles abc and def be 64 sq cm and 121 sq cm and ef=15.4 cm then bc equals​

Answers

Answered by user123456789
1

Answer:

bc/ef = 64/121

bc/15.4 = 64/121

bc = 64×15.4/121 ≈ 8.145

Answered by Anonymous
4

\frak {\underline{\orange{Answer}}}

Area of ∆ ABC = 64 cm²

Area of ∆ DEF = 121 cm²

We know that :-

∆ ABC \sim ∆ DEF

We also know :-

 \sf \frac{ar(ABC)}{ar(DEF)}  =    {(\frac{AB}{DE} )}^{2}= {(\frac{BC}{EF} )}^{2}={(\frac{AC}{DF} )}^{2}

 \sf \frac{64}{121}  =  { (\frac{(BC)}{(15.4)}) }^{2}

 \sf \frac{BC}{15.4}  =  \sqrt{ \frac{64}{121} }

 \sf \frac{BC}{15.4}  =  \frac{8}{11}

 \sf BC =  \frac{8}{11}  \times 15.4

 \boxed{\purple{\sf{ BC = 11.2}}}

BC = 11.2 cm

Similar questions