Math, asked by nick9410, 1 year ago

if area of triangle ABC :area of Triangle DEF =25:49 the ratio of the corresponding side is =

Answers

Answered by Anonymous
0

Step-by-step explanation:

Let the radius of two semicircles be r_1 and  r_2

→ Given :-

▶ The ratio of areas of two semicircles = 49:25 .

 \begin{lgathered}= > \frac{a_1}{a_2} = \frac{49}{25} . \\ \\ = > \frac{ \frac{ \cancel\pi {r_1}^{2} }{ \cancel2} }{ \frac{ \cancel\pi {r_1}^{2} }{ \cancel2} } = \frac{49}{25} . \\ \\ = > {( \frac{r_1}{r_2}) }^{2} = \frac{49}{25} . \\ \\ = > \frac{r_1}{r_2} = \sqrt{ \frac{49}{25} } . \\ \\ = > \frac{r_1}{r_2} = \frac{7}{5} .\end{lgathered}

→ To find :-

▶ The ratio of their circumference.

 \begin{lgathered}\therefore \frac{c_1}{c_2} \\ \\ = \frac{ \cancel\pi r_1}{ \cancel\pi r_2} . \\ \\ = \frac{r_1}{r_2} . \\ \\ = \boxed{ \green{ \frac{7}{5} .}}\end{lgathered}

Hence, ratio of their circumference is 7 : 5 .

Similar questions