If arg(z1/z2)=pi/2 then find the value of z1+z2/z1-z2
Answers
Answered by
48
arg(z1/z2) = π/2
we know, if Z = x + iy is a complex number
then, arg(z) = tan^{-1} y/x
so, arg(z1/z2) = π/2 means to say, real part of (z1/z2) is zero.
let , z1/z2 = ia
so, z1 = ia.z2 .......(1)
now, |z1- z2|/|z1 - z2| = |iaz2 + z2|/|iaz2 - z2|
= |ia + 1|/|ia + 1 |
= √{a² + 1²}/√{(-a)² + 1²}
= 1
hence the value of |z1 + z2|/|z1 + z2| = 1
we know, if Z = x + iy is a complex number
then, arg(z) = tan^{-1} y/x
so, arg(z1/z2) = π/2 means to say, real part of (z1/z2) is zero.
let , z1/z2 = ia
so, z1 = ia.z2 .......(1)
now, |z1- z2|/|z1 - z2| = |iaz2 + z2|/|iaz2 - z2|
= |ia + 1|/|ia + 1 |
= √{a² + 1²}/√{(-a)² + 1²}
= 1
hence the value of |z1 + z2|/|z1 + z2| = 1
Similar questions
Political Science,
6 months ago
Business Studies,
1 year ago