Math, asked by ighosh850, 11 months ago

if, as+bb+cc= abc

then, what is the value of a, b and c?​

Answers

Answered by shawnsquires23
0

Answer:

Step-by-step explanation:

SOLUTION: A,B and C represent different digits. AB represents a 2 digit number. AB+C=50 ; BC+ A=41.

Answered by puzzlepedia
0

Answer:

11+99+88=198

Step-by-step explanation:

AA+BB+CC=ABC

Substitute Maximum Posssible Values:

        99+88+77=264

        So,A is less than 300

        (i.e.,) A is 1 or 2 (0 is not Possible because A,B,C are +ve numbers)

=====>Lets take Units digit:

        A+B+C=C

            A+B=0 (0 is a units digit)

      Substitute A values:

         1+B=0        or   2+B=0

         1+9=0(10)    or   2+8=0(10)

         Above solution we get sum as 10 where 1 is a tens digit

                                                                      and 0 is a units digit.

     We get,

     A=1 and B=9

                   (or)

     A=2 and B=8

      11+99+CC=19C   (or)   22+88+CC=28C

        110+CC=19C     (or)     110+CC=28C   28C>264 (Maximum Possible

                                                                                      sum 99+88+77=264)  

                                                                                        So,it is not Possible.

=======>Lets take Tens digit from 110+CC=19C:

                                             1+C=9

                                                C=8

Finally we get A=1 B=9 C=8

   11+99+88=198

Easy Explanation In Puzzle Pedia:

      https://www.youtube.com/watch?v=-fW8i5w5A2w

Puzzle Pedia Youtube Channel:

      https://www.youtube.com/channel/UCVtK9k5zz-pgwX5Ah-wYiCQ

Attachments:
Similar questions