Math, asked by Ashish099, 11 months ago

If asec theta - btan theta=2 then find the value of bsec theta - atan theta=?

Answers

Answered by harendrachoubay
2

The value of b\sec \theta - a\tan \theta = ± \sqrt{a^2 -b^2-4}

Step-by-step explanation:

We have,

a\sec \theta - b\tan \theta=2                       ...... (1)

Let b\sec \theta - a\tan \theta=x

To find, the value of b\sec \theta - a\tan \theta=?

Squaring equations (1) and (2) and subtracting them, we get

a^2\sec^2 \theta + b^2\tan^2 \theta-2ab\sec \theta \tan \theta-(b^2\sec^2 \theta + a^2\tan^2 \theta-2ab\sec \theta \tan \theta)=2^2+x^2

a^2\sec^2 \theta + b^2\tan^2 \theta-2ab\sec \theta \tan \theta-b^2\sec^2 \theta -a^2\tan^2 \theta+2ab\sec \theta \tan \theta=4+x^2

a^2\sec^2 \theta + b^2\tan^2 \theta-b^2\sec^2 \theta -a^2\tan^2 \theta=4+x^2

a^2(\sec^2 \theta-\tan^2\theta) + b^2(\tan^2 \theta-\sec^2 \theta)=4+x^2

Using the trigonometric identity,

\sec^2 \theta-\tan^2\theta=1

a^2(1 + b^2(-1)=4+x^2

x^2=a^2 -b^2-4

⇒ x = ± \sqrt{a^2 -b^2-4}

Thus, the value of b\sec \theta - a\tan \theta = ± \sqrt{a^2 -b^2-4}

Similar questions