If asec theta - btan theta = 2
then find the value of
bsec theta - atan theta = ?
Answers
Here's the answer...
Hope it helps you...
Please mark it as brainliest...
☺️☺️☺️
value of b secθ - a tanθ is ±√(4 - a² + b²)
given, a secθ - b tanθ = 2 ........(1)
we have to find out the value of b secθ - a tanθ
let b secθ - a tanθ = x .......(2)
squaring and subtracting equations from (1) of (2) we get,
(a secθ - b tanθ)² - (b secθ - b tanθ)² = 2² - x²
⇒a²sec²θ + b²tan²θ -2ab secθ.tanθ - (b²sec²θ + b²tan²θ - 2ab secθ.tanθ) = 2² - x²
⇒a²(sec²θ - tan²θ) - b²(sec²θ - tan²θ) = 4 - x²
⇒a² × 1 - b² × 1 = 4 - x²
⇒x² = 4 - a² + b²
⇒x = ±√(4 - a² + b²)
also read similar questions : if x=asec theta + btan theta and y = atan theta +bsec theta. prove that x square-y square=a square-b square
https://brainly.in/question/1076151
x=asec theta and y=btan theta .eliminate theta50 POINTS.answer correct.
https://brainly.in/question/1591455