Math, asked by rajesh10575, 9 months ago

if Asin alpha=Bsin(alpha+2beta) then B+A/B-A is equal to.

Answers

Answered by pulakmath007
35

SOLUTION

GIVEN

 \sf{A \sin  \alpha  = B \sin( \alpha  + 2 \beta )}

TO DETERMINE

 \displaystyle \sf{ \frac{ B + A\: }{B  -  A}  \: }

FORMULA TO BE IMPLEMENTED

\displaystyle \sf{1.  \:  \: \sin  \alpha  +  \sin  \beta  = 2 \sin \bigg(  \frac{ \alpha  +  \beta }{2} \bigg) \cos \bigg(  \frac{ \alpha   -  \beta }{2} \bigg)\: }

\displaystyle \sf{2.  \:  \: \sin  \alpha   -  \sin  \beta  = 2 \cos \bigg(  \frac{ \alpha    +   \beta }{2} \bigg) \sin \bigg(  \frac{ \alpha   -  \beta }{2} \bigg)\: }

EVALUATION

 \sf{A \sin  \alpha  = B \sin( \alpha  + 2 \beta )}

 \displaystyle \implies \sf{ \frac{B}{ A}   =  \frac{\sin  \alpha \: }{\sin( \alpha  + 2 \beta )}  }

 \displaystyle \implies \sf{ \frac{B + A}{  B  -  A}   =  \frac{\sin  \alpha +\sin( \alpha  + 2 \beta )  \: }{\sin  \alpha  - \sin( \alpha  + 2 \beta )}  }

 \displaystyle \implies \sf{ \frac{B + A}{  B  -  A}   =  \frac{2\sin( \alpha  +  \beta ) \cos \beta   \: }{ - 2\cos( \alpha  +  \beta ) \sin \beta   }  }

 \displaystyle \implies \sf{ \frac{B + A}{  B  -  A}   = -   \frac{\sin( \alpha  +  \beta ) \cos \beta   \: }{ \cos( \alpha  +  \beta ) \sin \beta   }  }

 \displaystyle \implies \sf{ \frac{B + A}{  B  -  A}   = -   {\tan( \alpha  +  \beta ) \cot \beta   \: }  }

FINAL ANSWER

 \displaystyle \sf{ \frac{B + A}{  B  -  A}   = -   {\tan( \alpha  +  \beta ) \cot \beta   \: }  }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Prove that : tan (45+A)= sec2A + tan2A

https://brainly.in/question/25501012

Similar questions