Math, asked by mahimasingh4516, 1 year ago

if @(alpha) and beta are the zeroes of the quadratic polynomial f(x)=2x square-5x+7 .find a polynomial whose zeroes are {2@(alpha)+3 beta} and {3@(alpha)+2 beta}

Answers

Answered by nikky28
12
Heya !!!!

here is the answer ,

___________________

let \: the \: given \: quadratic \: polynomial \: be \: f(x) = 2 {x}^{2}  - 5x + 7
given : @ and b ( beta ) are zeros of given quadratic polynomial .

Therefore,

sum \: of \: roots =  - ( \frac{ - 5}{2} )
@+b = 5/2 - - - - - - (1)

and \: product \: of \: roots \:  = \:  \frac{7}{2}
@b = 7/2 - - - - - - - (2)


now, when zeros of  polynomial are (3α+2β) and (2α+3β), then 

sum of roots= (3α+2β) + (2α+3β) =5α+5β=5(α+β) 

= 5 (@+b) [ from (1) ]

 = 5 \times  \frac{5}{2}
 =  \frac{25}{2}

and product of roots = (3@+2b) (2@+3b)

= 6@^2+9@b +4@b +6b^2. [from (3)]

= 6(@^2+b^2) +13@b

= 6 [(@+b)^2-2@b] + 13@b

 = 6( ( { \frac{5}{2}) }^{2}  - 2 \times  \frac{7}{2} ) + 13 \times  \frac{5}{2}  \\  \\  = 6( \frac{25}{4 } - 7 ) +  \frac{65}{2}
 = 6( \frac{25 - 28}{4} )  + \frac{65}{2}  \\  \\  = 6( \frac{ - 3}{4} ) +  \frac{65}{2}  \\  \\  =  \frac{ - 9}{2}  +  \frac{65}{2}  =  \frac{ - 9 + 65}{2}  =  \frac{56}{2}  = 28

thus, the polynomial obtained is 

g(x) =  {x}^{2}  - (sum \: ofzeros)x + product \: of \: zeros \\  \\  =  {x}^{2}  -  \frac{25}{2} x + 28

__________________

Hope it helps u !!!!

Cheers :))

☺☺

# Nikky


Similar questions