Math, asked by narsimhabodige, 1 year ago

If ax3+bx2+cx+d is divided by (x-2) the coefficients of quotient are 2,-1,3 and the remainder is 4, then the polynomial is

Answers

Answered by MaheswariS
28

\textbf{Given:}

\text{When}\;\mathrm{ax^3+bx^2+cx+d}\;\text{is divided by (x-2)},}

\text{Quotient=}\mathrm{2x^2-x+3}

\text{Remainder=4}

\textbf{To find:}

\text{The polynomial}

\textbf{Solution:}

\textbf{Division algorithm:}

\textbf{Dividend=(Divisor$\times$Quotient)+Remainder}

\text{Using division algorithm}

\textbf{The required polynomial is}

\mathrm{=(x-2)(2x^2-x+3)+4}

\mathrm{=(2x^3-x^2+3x-4x^2+2x-6)+4}

\mathrm{=(2x^3-5x^2+5x-6)+4}

\mathrm{=2x^3-5x^2+5x+2}

\textbf{Answer:}

\textbf{The required polynomial is}

\mathrm{\bf\,2x^3-5x^2+5x+2}

Answered by shineykashetti
4

Answer:

you did mistake -6+4 is not +2 it is -2

Similar questions