if b^2+1/b^2= 62 than prove that b^3+1/b^3=488
Answers
Answered by
2
EXPLANATION.
⇒ (b² + 1/b²) = 62.
As we know that,
Formula of :
⇒ (x + y)³ = x³ + 3x²y + 3xy² + y³.
⇒ (x + y)² = x² + y² + 2xy.
Using this formula in the equation, we get.
⇒ (b + 1/b)² = b² + 1/b² + 2(b)(1/b).
⇒ (b + 1/b)² = b² + 1/b² + 2.
Put the values of (b² + 1/b²) = 62 in the equation, we get.
⇒ (b + 1/b)² = 62 + 2.
⇒ (b + 1/b)² = 64.
⇒ (b + 1/b) = √64.
⇒ (b + 1/b) = ± 8.
Now, cubing both sides of the equation, we get.
⇒ (b + 1/b)³ = (8)³.
⇒ (b)³ + 3(b)²(1/b) + 3(b)(1/b)² + (1/b)³ = (8)³.
⇒ b³ + 3b + 3/b + 1/b³ = 512.
⇒ b³ + 3(b + 1/b) + 1/b³ = 512.
Put the values of (b + 1/b) = 8 in the equation, we get.
⇒ b³ + 3(8) + 1/b³ = 512.
⇒ b³ + 1/b³ + 24 = 512.
⇒ b³ + 1/b³ = 512 - 24.
⇒ b³ + 1/b³ = 488.
Hence Proved.
Similar questions
History,
16 hours ago
Math,
16 hours ago
World Languages,
1 day ago
India Languages,
8 months ago
English,
8 months ago