if b+c=-1 & bc=-6, then b^3+c^3 is equal to
Plzz answer fast
Answers
Answered by
3
Hey Mate⭐⭐⭐
Here's ur answer ⤵ ⤵ ⤵
♦ b+c= -1 & bc= -6
First we will find the value of b^2+c^2
➡ (b+c)^2= b^2+c^2+2bc
➡ (-1)^2=b^2+c^2+2 (-6)
➡ 1 = b^2+c^2 -12
➡ b^2+c^2 = 13
Now we will find the value of b^3+c^3
We know that a^3+b^3 = (a+b)(a^2+b^2-ab)
➡ b^3+c^3 = (b+c)(b^2+c^2-bc)
➡ b^3+c^3 = (-1)[13-(-6)]
➡ b^3+c^3 = -19
✔✔✔Hope it will help you☺☺☺
Here's ur answer ⤵ ⤵ ⤵
♦ b+c= -1 & bc= -6
First we will find the value of b^2+c^2
➡ (b+c)^2= b^2+c^2+2bc
➡ (-1)^2=b^2+c^2+2 (-6)
➡ 1 = b^2+c^2 -12
➡ b^2+c^2 = 13
Now we will find the value of b^3+c^3
We know that a^3+b^3 = (a+b)(a^2+b^2-ab)
➡ b^3+c^3 = (b+c)(b^2+c^2-bc)
➡ b^3+c^3 = (-1)[13-(-6)]
➡ b^3+c^3 = -19
✔✔✔Hope it will help you☺☺☺
udayanand1978:
Thanks bro
Similar questions