if b-c, 2b-x and b-a are in H.P then a-(x/2), b-(x/2), c-(x/2) are in a)A.P b)G.P c)H.P d)none
Answers
Answered by
6
Answer:
a-(x/2), b-(x/2), c-(x/2) are in a GP
Step-by-step explanation:
b-c, 2b-x and b-a are in H.P
=> 2/(2b - x) = 1/(b-c) + 1/(b-a)
=> 2/(2b - x) = (b - a + b - c) /(b-c)(b-a)
=> 2 (b-c)(b-a) = (2b - a - c) (2b - x)
=> 2b² - 2bc - 2ab + 2ac = 4b² - 2ab - 2bc - 2bx + ax + cx
=> 2ac = 2b² - 2bx + ax + cx
=> ac = b² - bx + ax/2 + cx/2
=> ac - ax/2 - cx/2 = b² - bx
Adding x²/4 both sides
=> ac - ax/2 - cx/2 + x²/4 = b² - bx + x²/4
=> a(c - x/2) - (x/2)(c - x/2) = b² -bx/2 - bx/2 + x²/4
=> a(c - x/2) - (x/2)(c - x/2) = b(b - x/2) - x/2(b - x/2)
=> (a - x/2)(c- x/2) = (b - x/2)²
=> a-(x/2), b-(x/2), c-(x/2) are in a GP
Similar questions
English,
6 months ago
English,
1 year ago
Math,
1 year ago
Computer Science,
1 year ago
English,
1 year ago