if Ā= B + C and the magnitude of A, B and Care 5, 4 and 3 units, respectively, then angle between A and C is
Answers
Answered by
1
Given that [math]|\vec A|=5[/math] , [math]|\vec B|=4[/math], [math]|\vec C|=3[/math] &
[math]\vec A=\vec B+\vec C[/math]
[math]\vec A-\vec B=\vec C[/math]
Taking self scalar product on both the sides as follows
[math](\vec A-\vec B)\cdot(\vec A-\vec B)=\vec C\cdot \vec C[/math]
[math]\vec A\cdot \vec A-\vec B\cdot \vec A-\vec A\cdot \vec B+\vec B\cdot \vec B=|\vec C|^2[/math]
[math]|\vec A|^2-2\vec A\cdot \vec B+|\vec B|^2=|\vec C|^2[/math]
[math]5^2-2|\vec A||\vec B|\cos\theta+4^2=3^2[/math]
Similar questions