If b+c, c+a, a+b are in A.P then a, b, c are in
a) A.P
b) G.P
c) H.P
d) A.G.P
Answers
Answered by
0
Answer:
a) A.P
Step-by-step explanation:
If a,b,c are in AP
a+c=2b
we need to prove a+b,c+a,b+c are in AP
∴2(a+c)=b+c+a+b
2c+2a=2b+c+a
a+c=2b
∴proved.
Answered by
0
Answer:
hey mate !! here is your answer..
Step-by-step explanation:
Given:a
2
,b
2
,c
2
are in A.P
∴b
2
−a
2
=c
2
−b
2
⇒(b−a)(b+a)=(c−b)(c+b)
⇒(b+c−c−a)(b+a)=(c+a−a−b)(c+b)
⇒[(b+c)−(c+a)](b+a)=[(c+a)−(a+b)](c+b)
⇒(a+b)(b+c)−(a+b)(c+a)=(b+c)(c+a)−(b+c)(a+b)
Dividing both sides by (a+b)(b+c)(c+a) we get
c+a
1
−
b+c
1
=
a+b
1
−
c+a
1
⇒
b+c
1
,
c+a
1
,
a+b
1
are in A.P
Similar questions