Math, asked by abhigna777, 8 months ago

if b+c, c+a, a+b are in ap then a, b, c are in​

Answers

Answered by amansharma264
0

 \large \bold \red{ \underline{answer}} \\  \\  \implies{a \:  \: b \:  \: c \:  \:  \: are \:  \: also \:  \: in \:  \:  \: ap}

Step-by-step explanation:

 \large \implies  \bold \green{given} \\  \\  \implies{b + c \:  \:  \:  \:  \: c + a \:  \:  \:  \: a + b \:  \:  \:  \: are \:  \: in \:  \:  \: ap \: } \\  \\  \implies \bold \blue{conditions \:  \: of \:  \: ap} \\  \\  \implies \boxed{2b = a + c} \\  \\  \implies{2(c + a) = b + c + a + b} \\  \\  \implies{2c + 2a = 2b + c + a} \\  \\  \implies \boxed{c + a = 2b} \\  \\  \implies \green \therefore \green{a \:  \: b \:  \: c \:  \: are \:  \: also \:  \: in \:  \: ap}

Similar questions