if b is mean proportional between and c then (a^2-b^2+c^2)/(a^-2-b^-2+c^-2)=?
Answers
Answered by
14
Hi ,
If b is the mean Proportion of a and
b then
b² = ac ---( 1 )
Now ,
( a² + b² + c² )/( a^-2 + b^-2 + c^-2 )
= ( a² + b² + c² )/( 1/a² + 1/b² + 1/c² )
= (a² + ac + c² )/( 1/a² + 1/ac + 1/c² )
[ From ( 1 ) ]
= (a² + ac + c²)/[(c²+ ac + a²)/a²c²
= [ a²c² (a²+ ac+ c²)/( a² + ac + c² )]
= a²c²
I hope this helps you.
: )
If b is the mean Proportion of a and
b then
b² = ac ---( 1 )
Now ,
( a² + b² + c² )/( a^-2 + b^-2 + c^-2 )
= ( a² + b² + c² )/( 1/a² + 1/b² + 1/c² )
= (a² + ac + c² )/( 1/a² + 1/ac + 1/c² )
[ From ( 1 ) ]
= (a² + ac + c²)/[(c²+ ac + a²)/a²c²
= [ a²c² (a²+ ac+ c²)/( a² + ac + c² )]
= a²c²
I hope this helps you.
: )
Answered by
4
Answer:
Hi ,
If b is the mean Proportion of a and
b then
b² = ac ---( 1 )
Now ,
( a² + b² + c² )/( a^-2 + b^-2 + c^-2 )
= ( a² + b² + c² )/( 1/a² + 1/b² + 1/c² )
= (a² + ac + c² )/( 1/a² + 1/ac + 1/c² )
[ From ( 1 ) ]
= (a² + ac + c²)/[(c²+ ac + a²)/a²c²
= [ a²c² (a²+ ac+ c²)/( a² + ac + c² )]
= a²c²
I hope this helps you.
Similar questions