If b is the mean Proportional between a and c . prove that (ab+bc) is the mean Proportional between (a^2+b^2) and (b^2+c^2)
Answers
Answered by
12
Answer:
Proved below.
Step-by-step explanation:
Given,
b is the mean proportional between a and c.
It means :
a / b = b / c
⇒ ac = b^2 ...( 1 )
Now,
⇒ b^2( a + c )^2 = b^2( a + c )^2
⇒ ac( a + c )^2 { from ( 1 ) }
⇒ a( a + c )c( a + c )
⇒ ( a^2 + ac )( ac + c^2 )
⇒ ( a^2 + b^2 )( b^2 + c^2 )
⇒ b^2( a + c )^2 = ( a^2 + b^2 )( b^2 + c^2 )
⇒ ( ab + ac )^2 = ( a^2 + b^2 )( b^2 + c^2 )
⇒ ( ab + ac ) / ( b^2 + c^2 ) = ( a^2 + b^2 ) / ( ab + ac )
The above relation says that ab + bc is the mean proportional between a^2 + b^2 and b^2 + c^2.
Similar questions