Math, asked by ishandiptagarai, 1 month ago

If b is the mean proportional of a and c,then prove that


Attachments:

Answers

Answered by mathdude500
3

Given :-

  • b is the mean proportional between a and c.

To prove :-

 \rm :\longmapsto\:{\bigg(\dfrac{ab + bc + ca}{a + b + c}\bigg) }^{3} = abc

Solution :-

Since,

b is the mean proportion between a and c

\bf\implies \:a,b,b,c \: are \: in \: proportion

\rm :\implies\:a : b :: b : c

\rm :\implies\:\dfrac{a}{b}  = \dfrac{b}{c}

\bf\implies \: {b}^{2}  = ac

Now,

Consider,

 \rm :\longmapsto\:{\bigg(\dfrac{ab + bc + ca}{a + b + c}\bigg) }^{3}

 \rm : =  \: \:{\bigg(\dfrac{ab + bc +  {b}^{2} }{a + b + c}\bigg) }^{3} \:  \:  \:  \:  \{ \because \:  {b}^{2} = ac \}

 \rm : =  \: \:{\bigg(\dfrac{b \:  \:  \cancel{(a + c + b)}}{ \cancel{a + b + c}}\bigg) }^{3} \:

 \rm \:  =  \:  \:  {b}^{3}

 \rm \:  =  \:  \: b \times  {b}^{2}

 \rm \:  =  \:  \: b \times ac\:  \:  \:   \:  \:  \: \{ \because \:  {b}^{2} = ac \}

 \rm \:  =  \:  \: abc

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

To find third proportional to a and b,

Third proportional (x) to a and b is

\bf\implies \:a,b,b,x \: are \: in \: proportion

\rm :\implies\:a : b :: b : x

\rm :\implies\:\dfrac{a}{b}  = \dfrac{b}{x}

\bf\implies \:x = \dfrac{ {b}^{2} }{a}

Similar questions