Math, asked by rajputkajal10228, 10 months ago

If b² + 1/b² = 1, then value of b³+ 1/b³ is,
(A) O
(B) 6
(C) -4
(D) 4​

Answers

Answered by Stera
2

Answer

The correct option is :

(A) 0

   \large\underline{\sf \bf{Given : }}

  • b² + 1/b² = 1

 \bf \large{ \underline{To  \: Find : }}

  • The value of b³ + 1/b³

 \bf \large{ \underline{Solution : }}

We are given,

  \longrightarrow\sf {b}^{2}  +  \dfrac{1}{ {b}^{2} } = 1  \\  \\  \sf \implies {b}^{2}  +  \dfrac{1}{ {b}^{2} }  + 2 = 1 + 2 \\  \\  \sf \implies {b}^{2}  +  \dfrac{1}{ {b}^{2} }  + 2. b.\dfrac{1}{b}  = 3 \\  \\  \sf \implies {( b  +  \dfrac{1}{b})  }^{2}  = 3 \\  \\   \sf\implies b  +  \dfrac{1}{b} =  \sqrt{3}

Now we have from the identities ,

\tt a^{3} + b^{3} = (a+b)(a^{2}-ab+b^{2})

Therefore ,

\sf \hookrightarrow b^{3} + \dfrac{1}{b^{3}} \\\\ \sf\hookrightarrow \{ b + \dfrac{1}{b}\}\{b^{2} - b.\dfrac{1}{b}+{(\dfrac{1}{b})}^{2} \}\\\\ \sf\hookrightarrow ( b + \dfrac{1}{b})(b^{2} + \dfrac{1}{b^{2}} - 1 ) \\\\ \sf\hookrightarrow \sqrt{3}( 1 - 1) \\\\ \sf \hookrightarrow\sqrt{3}\times 0 \\\\ \sf \hookrightarrow 0

Therefore , the required value of b³ + 1/b³ is 0

Similar questions