If bcos θ = a, then prove that cosec θ + cot θ = √(b+a)/(b-a).
Answers
Answered by
1
cosQ =a/b
then other sides will be √b2-a2
sinQ=√b2-a2/b
then other sides will be √b2-a2
sinQ=√b2-a2/b
Answered by
3
tan θ + cot θ = sec θ . cosec θ
L.H.S
tan θ + cot θ
(sin θ /cos θ) + ( cos θ / sinθ)
[ tan θ = (sin θ /cos θ) , cot θ= ( cos θ / sinθ)]
( sin²θ + cos²θ/ cos θ sin θ)
1/ cos θ sin θ
1/ cos θ × 1/sin θ
Sec θ . Cosec θ
[ Sec θ = 1/cosθ , Cosec θ = 1/ sin θ ]
L.H.S = R.H.S
I hope this answer is helpful to u
L.H.S
tan θ + cot θ
(sin θ /cos θ) + ( cos θ / sinθ)
[ tan θ = (sin θ /cos θ) , cot θ= ( cos θ / sinθ)]
( sin²θ + cos²θ/ cos θ sin θ)
1/ cos θ sin θ
1/ cos θ × 1/sin θ
Sec θ . Cosec θ
[ Sec θ = 1/cosθ , Cosec θ = 1/ sin θ ]
L.H.S = R.H.S
I hope this answer is helpful to u
Similar questions