Math, asked by joy4542, 10 months ago

If α,β,γ be zeros of polynomial 6x3 + 3x2− 5x + 1, then find the value of α−1+β−1+γ−1.​

Answers

Answered by priyans20
0

Answer:

Given α,β & ɣ are the roots of the polynomials 6x³ + 3x² - 5x + 1 = 0 then

α+β+ɣ  = -3/6 = -1/2

αβ+βɣ+αɣ = -5/6

αβɣ = -1/6

α⁻¹ + β⁻¹ + ɣ⁻¹  = 1/α + 1/β + 1/ɣ

                      = (αβ+βɣ+αɣ) / αβɣ

                       = -5/6 / -1/6

                      = 5

Read more on Brainly.in - https://brainly.in/question/7365559#readmore

Answered by silentlover45
5

\underline\mathfrak{Given:-}

  • 6x³ + 3x² - 5x + 1

\underline\mathfrak{To \: \: Find:-}

  • find the value of α−1+β−1+γ−1 ...?

\underline\mathfrak{Solutions:-}

  • The equation is in the form of:-

6x³ + 3x² - 5x + 1 = 0

  • a = 6
  • b = 3
  • c = -5
  • d = 1

\: \: \: \: \: \therefore {Sum \: \: of \: \: zeroes}:-

\: \: \: \: \: \leadsto \: \:  \alpha\: + \: \beta \: + \: \gamma \: \: = \: \: - \: \frac{-b}{a}

\: \: \: \: \: \leadsto \: \:  \alpha\: + \: \beta \: + \: \gamma \: \: = \: \: - \: \frac{-3}{6}

\: \: \: \: \: \leadsto \: \:  \alpha\: + \: \beta \: + \: \gamma \: \: = \: \: \: \frac{-1}{2}

\: \: \: \: \: \therefore {Sum \: \: of \: \: the \: \: product \: \: of \: \: zeroes}:-

\: \: \: \: \: \leadsto \: \: \alpha\beta  \: + \: \beta\gamma \: + \: \alpha\gamma \: \: = \: \: \frac{c}{a}

\: \: \: \: \: \leadsto \: \: \alpha\beta  \: + \: \beta\gamma \: + \: \alpha\gamma \: \: = \: \: \frac{-5}{6}

\: \: \: \: \: \therefore {Product \: \: of \: \: zeroes}:-

\: \: \: \: \: \leadsto \: \: \alpha\beta\gamma  \: \: = \: \: \frac{-d}{a}

\: \: \: \: \: \leadsto \: \: \alpha\beta\gamma  \: \: = \: \: \frac{-1}{6}

Now,

\: \: \: \: \: \leadsto \: \: {\alpha}^{-1} \: + \: {\beta}^{1} \: + \: {\gamma}^{1}

\: \: \: \: \: \leadsto \: \:  \frac{\alpha\beta  \: + \: \beta\gamma \: + \: \alpha\gamma}{\alpha\beta\gamma}

\: \: \: \: \: \leadsto \: \:  \frac{\frac{-5}{6}}{\frac{-1}{6}}

\: \: \: \: \: \leadsto \: \:  \frac{-5}{\cancel{6}} \: \times \: \frac{\cancel{6}}{-1}

\: \: \: \: \: \leadsto \: \: {5}

Hence, the value of α−1+β−1+γ−1 is 5.

Similar questions