Math, asked by shivam911191, 4 months ago

If both a and b are rational numbers, find the values of a and b:
√3 -1
V3+1
= a +b V3​

Answers

Answered by Anonymous
27

Correct Question :-

If both a and b are rational numbers, find the values of a and b:

⠀⠀

\sf \dfrac{\sqrt{3}-1}{\sqrt{3}+1} = a + b\sqrt{3}

⠀⠀

Answer :-

⠀⠀

\sf \dfrac{\sqrt{3}-1}{\sqrt{3}+1} = a + b\sqrt{3}

⠀⠀

Rationalizing the denominator -

\sf \Big(\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\Big) \times  \Big(\dfrac{\sqrt{3}-1}{\sqrt{3}-1}\Big)

\sf \dfrac{\Big(\sqrt{3}-1\Big)\Big(\sqrt{3}-1\Big)}{\Big(\sqrt{3}-1\Big)\Big(\sqrt{3}+1\Big)}

\sf \dfrac{(\sqrt{3})^2 + (1)^2 - 2 \times ( \sqrt{3} ) (1) }{(\sqrt{3})^2 - (1)^2}

\sf \dfrac{3+1-2\sqrt{3}}{3-1}

\sf \dfrac{4-2\sqrt{3}}{2}

\sf 2 - \sqrt{3}

Comparing LHS and RHS :-

\sf 2 - \sqrt{3} = a + b\sqrt{3}

\boxed{\sf a = 2 }

\boxed{\sf b = -1}

Similar questions