Math, asked by diyasaravanan, 9 days ago

If both a and b are rational numbers, find the values of a and b when (4+√5/ 4 - √5) +
(4 - √5/ 4+√5) = a + b√5

Answers

Answered by vasudhatodwal6037
2

Answer:

a=42/11 b=0

Step-by-step explanation:

 \frac{4 +  \sqrt{5} }{4 -  \sqrt{5} }   +  \frac{4 -  \sqrt{5} }{4 +  \sqrt{5} }  = a + b \sqrt{5}

 \frac{ {(4 +  \sqrt{5}) }^{2} +  {(4 -  \sqrt{5}) }^{2} }{ {4 }^{2}  -  { \sqrt{5} }^{2} }  = a + b \sqrt{5}

 \frac{16 + 5 + 8 \sqrt{5}  + 16 + 5 - 8 \sqrt{5} }{16 - 5}  = a + b \sqrt{5}

 \frac{42}{11}  = a + b \sqrt{5}

a =  \frac{42}{11} \:  b = 0

plz mark me as brainliest

Similar questions