Math, asked by khwahishakhan, 1 year ago

if both a and b are rational numbers find the values of a and b in the given equalities 5+3√3 upon 7+4√3= a+b√3​

Answers

Answered by Anonymous
168

\mathrm{Question :\;\dfrac{5 + 3\sqrt{3}}{7 + 4\sqrt{3}}}

\mathrm{Multiplying\;and\;Dividing\;the\;above\;fraction\;with\;7 - 4\sqrt{3}}

\implies \dfrac{7 - 4\sqrt{3}}{7 - 4\sqrt{3}} \times \dfrac{5 + 3\sqrt{3}}{7 + 4\sqrt{3}}

\implies \dfrac{\big(5 + 3\sqrt{3}\big)\big(7 - 4\sqrt{3}\big)}{\big(7 + 4\sqrt{3}\big)\big(7 - 4\sqrt{3}\big)}

●  Use Identity : (A + B)(A - B) = A² - B²

\implies \dfrac{(5)(7) - 5(4\sqrt{3}) + (7)(3\sqrt{3}) - (4\sqrt{3})(3\sqrt{3})}{\big(7\big)^2 - \big(4\sqrt{3}\big)^2}

\mathrm{\implies \dfrac{35 - 20\sqrt{3} + 21\sqrt{3} - (4)(3)(\sqrt{3})^2}{49 - (4)^2(\sqrt{3})^2}}

\mathrm{\implies \dfrac{35 + \sqrt{3} - (12)(3)}{49 - (16)(3)}}

\mathrm{\implies \dfrac{35 + \sqrt{3} - 36}{49 - 48}}

\mathrm{\implies {-1 + \sqrt{3}}}

\mathrm{\implies -1 + \sqrt{3} = a + b\sqrt{3}}

Comparing both sides :

●  a = - 1

●  b = 1


rishika4068: gd answer
Anonymous: thank you thank you :smirk: xD
rishika4068: to whom are you saying
Swarnimkumar22: ossom
khushi769: Fab❤️
Joshitha34: good
taibak32: nice ❤️
sneha9191: very nice
Anonymous: Awesome
Anonymous: Nice!
Answered by SillySam
119

Answer: A = -1 and B =1

Step-by-step explanation:

\frac{5+3\sqrt{3} }{7+4\sqrt{3} }  

Rationalising the denominator by multiplying both denominator nd numerator with 7-4√3

\frac{5+3\sqrt{3} }{7+4\sqrt{3} } \times \frac{7-4\sqrt{3} }{7-4\sqrt{3} }

Using identity : (a+b) (a-b) = a^2 - ^2

\frac{(5+3\sqrt{3} )(7-4\sqrt{3} )}{7^{2} - (4\sqrt{3}) ^{2} }

\frac{35-20\sqrt{3}+21\sqrt{3} -36 }{49 - 48}

\sqrt{3} -1 = a+ b\sqrt{3}

So, a= -1 and B = 1


MoonGurl01: Muje bhi de dena Achar... xD Btw Tuje daalna to aata hi ni h.. xD :grin:
khushi769: xDddd
SillySam: Thnx @taibak and @khushi769 ..@pihu aap sikha do xD
MoonGurl01: Nhi Shikhaungi ... :grin: :teasing:
Anonymous: Awesome
SillySam: Thanks @brainlyfrodo :)
Anonymous: Great answer! :D
SillySam: thanka :p
kaifj: hi
kaifj: inbox me
Similar questions