if both (x-2) and (x-1/2) are factors of px^2 +5x +r. show that p=r.
Answers
Answered by
7
Let, f(x)=px^2+5x+r; (x-2=0)
f(2)=p*(2)^2+5*2+r ; (x=2)
0=p*4+10+r
-10=4p+r
4p+r=-10
Let, f(x) =px^2+5x+r; (x-1/2=2)
f(1/2)=p(1/2)*2+5*1/2+r;(x=1/2)
0=p*1/4+5/2+r
0=p/4+5/2+r
-5/2=p/4+r
p/4+r=-5/2
p/4+r/1=-5/2
(p+4r)/4=-5/2
p+4r=-20/2(By cross multiplication)
p+4r=-10
f(2)=p*(2)^2+5*2+r ; (x=2)
0=p*4+10+r
-10=4p+r
4p+r=-10
Let, f(x) =px^2+5x+r; (x-1/2=2)
f(1/2)=p(1/2)*2+5*1/2+r;(x=1/2)
0=p*1/4+5/2+r
0=p/4+5/2+r
-5/2=p/4+r
p/4+r=-5/2
p/4+r/1=-5/2
(p+4r)/4=-5/2
p+4r=-20/2(By cross multiplication)
p+4r=-10
4p+r=-10(i)*1
p+4r=-10(ii)*4
4p+r=-10
4p+16r=-40
(-) (-) (+)
-15r=30
15r=-30
r=-30/15
r=-2
4p+r=-10
4p-2=-10
4p=-10+2
4p=-8
p=-8/4
p=-2
Since, p=-2
r=-2
Therefore, p=r
Rudrajyoti5869:
plzz mark as the brainliest if it is helpful
Similar questions