If bsinA= asin(A +2B), then (a+b) ÷ (a-b) =
Answers
Answer:
a+b = b sin²A + a sin²(A+2B)
a-b b sin²A - a sin²(A+2B)
Step-by-step explanation:
bsinA = asin(A+2B)
b = asin(A+2B)
sinA
also,
a = bsinA
sin(A+2B)
therefore,
a+b = bsina + asin(A+2B)
sin(A+2B) sinA
=> a+b = bsin²a + asin²(A+2B) ______( eq. 1)
sin(A+2B)sinA
similarly,
a-b = bsina - asin(A+2B)
sin(A+2B) sinA
=>a-b = bsin²a - asin²(A+2B) ______( eq. 2)
sin(A+2B)sinA
dividing eq. 1 and 2 we get,
a+b = b sin²A + a sin²(A+2B)
a-b b sin²A - a sin²(A+2B)
similarly
a-b = bsina/ sin(A+ 2B) - asin( a+ 2b)/ sinA
a - b = bsin^2a -asin^2(A+2b) => equation 2
sin( A+ 2B )
divide eq 1, and 2 we get
a+b / a-b = bsin^2 + a sin^2 (a+2b)/bsin^2 - a sin^2 (a+2b)