If bx+ay = a^2 + b^2 and ax- by = 0, then the value of (x - y) will be what?
Answers
Step-by-step explanation:
ay+bx=a²+b²----(1)
ax-by=0---(2)
from(2)
ax/b=y
a(ax/b)+bx=a²+b²
a²x/b+bx=a²+b²
a²x/b+bx-a²-b²=0
(a²/b+b)x-a²-b²=0
(a²/b+b)x=a²+b²
x=a²+b²/(a²/b+b) ---(A)
for y, put (A) in (2)
a[(a²+b²)/(a²/b+b)]-by=0
a/b[(a²+b²)/(a²/b+b)=y
x-y =a²+b²/(a²/b+b)-(a/b[a²+b²)/(a²/b+b)
x-y=a²+b²[1-a/b)/(a²/b+b)
x-y=a²+b²[b-a/b)/(a²+b²/b)
x-y=a²+b²(b-a)/(a²+b²)
x-y=b-a
this is your answer
The value of (x-y) is b-a.
Step-by-step explanation:
The given equations are
.... (1)
.... (2)
We need to find the value of (x - y).
Add (equation(1) × b) and (equation(2) × a), to eliminate y.
Cancel out common factors.
Substituting value of x=b in (2),
Divide both sides by b.
We need to find the value of x-y.
Therefore, the value of (x-y) is b-a.
#Learn more
If bx+ay=a^2+b^2 and ax-by=0,then the value of (x-y) is?
https://brainly.in/question/9400748