Math, asked by satyam199, 1 year ago

If α, β € C are the distinct roots, of the

equation x
^2−x+1=0, then α
^101+β^107 is

equal to what?

Answers

Answered by Anonymous
14
hope this helps you......
Attachments:
Answered by guptasingh4564
2

Thus, The value of  \alpha^{101}+\beta^{107} is -1

Step-by-step explanation:

Given;

For \alpha ,\beta\, \epsilon\, C are the distinct roots,x^{2} -x+1=0  then \alpha^{101}+\beta^{107}  =?

x^{2} -x+1=0

Then,

x=\frac{-b\pm\sqrt{b^{2}-4ac} }{2a}

In equation a=1,b=-1 and c=1

Plug all the value in above equation;

x=\frac{-(-1)\pm\sqrt{(-1)^{2}-(4\times1\times1)} }{2\times1}

x=\frac{1\pm\sqrt{1-4} }{2}

x=\frac{1\pm\sqrt{-3} }{2}

x=\frac{1\pm i\sqrt{3} }{2}  where i=\sqrt{-1}

\alpha=\frac{1+ i\sqrt{3} }{2}=-\omega^{2}

and  \beta=\frac{1-i\sqrt{3} }{2}=-\omega  where \omega^{3}=1

Now,

  \alpha^{101}+\beta^{107}

=(-\omega^{2}) ^{101}+(-\omega)^{107}

=-\omega^{202}-\omega^{107}

=-\omega-\omega^{2}

=-(\omega+\omega^{2})

=-1  where \omega^{2}+\omega+1=0

∴ The value of  \alpha^{101}+\beta^{107} is -1

Similar questions