if can do this do
i will mark brainiest
Attachments:
Answers
Answered by
1
11(1+2) + 12 (2+1)
= 11³ + 12³
= 1331 + 1728
= 133 (10) + 1 + 1728
=133(10) + 1729
=133(10) + 133(13)
=133 (26)
Assume it is true for a natural number k. Prove it is true for the number k + 1:
True for k:
11(k+2) + 12(2k+1) = 133(m), where mis
an integer.
Fork +1:
11k+1+2 + 122(k+1)+1
= 11k+2 x 11+122k+2+1 =11(k+ 2) × 11 + 12(2k + 1) × 12²
=11 × 11k+² + (11 +133) × 12²k+1
=11(11k+2 + 12²k+1) + 133 × 12²k+1
=11(133m) + 133 × 12²k+1
B 133(11m + 12(2k+1)) hence it is divisible
by 133.
Similar questions