Math, asked by Anonymous, 3 months ago

If Coefficient of \sf x^{7} in \sf \bigg(x^2-\dfrac{1}{x} \bigg)^{11} , Then Find the value of r

Answers

Answered by mathdude500
11

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{an \: expansion} \\ &\sf{\bigg(x^2-\dfrac{1}{x} \bigg)^{11}} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\: find - \begin{cases} &\sf{coefficient \: of \:  {x}^{7} }  \end{cases}\end{gathered}\end{gathered}

Concept used : -

 \tt \: In \:  the  \: expansion  \: of  \:  {(x + a)}^{n} ,  \: the \: general \: term \: is

 \tt \: T_{(r + 1)} = \:^n C_r \:  {(x)}^{ n-r }  {a}^{r}

\large\underline{\bold{Solution :-  }}

Now,

  • Given series is

\rm :\longmapsto\:\bigg(x^2-\dfrac{1}{x} \bigg)^{11}

  • The general term is given by

\rm :\longmapsto\: T_{(r + 1)} = \:^{11} C_r \:  {( {x}^{2}) }^{11 - r}  { \bigg(\dfrac{ - 1}{x}  \bigg)}^{r}

\rm :\longmapsto\: T_{(r + 1)} = \:^{11} C_r \:  {x}^{22 - 2r} \dfrac{ {( - 1)}^{r} }{ {x}^{r} }

\rm :\longmapsto\: T_{(r + 1)} = \:^{11} C_r \:  {( - 1)}^{r}  {(x)}^{22 - 3r}  -  - (1)

Now,

\rm :\longmapsto\:To  \: find \:  the \: coefficient \: of \:  {x}^{7}

\rm :\longmapsto\:put \: 22 - 3r = 7

\rm :\longmapsto\:3r = 15

\rm :\longmapsto\:r \:  =  \: 5

  • Now, Substitute r = 5, in equation (1) is

\rm :\longmapsto\: T_{(5 + 1)} = \:^{11} C_5 \:  {( - 1)}^{5}  {(x)}^{22 - 3 \times 5}

\rm :\longmapsto\: T_{6} = \:^{11} C_5 \:  {( - 1)}^{5}  {(x)}^{7}

\bf\implies \:coefficient \: of \:  {x}^{7}  =  {( - 1)}^{5} \:^{11} C_5

\rm :\longmapsto\:\:coefficient \: of \:  {x}^{7}  =  - \dfrac{11 \times 10 \times 9 \times 8 \times 7}{5 \times 4 \times 3 \times 2}

\rm :\longmapsto\:\:coefficient \: of \:  {x}^{7}  =   \: -  \: 462

Answered by ItzMeMukku
2

Step-by-step explanation:

\begin{gathered}\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{an \: expansion} \\ &\sf{\bigg(x^2-\dfrac{1}{x} \bigg)^{11}} \end{cases}\end{gathered}\end{gathered}\end{gathered}

Given−

\begin{gathered}\begin{gathered}\bf \: To\: find - \begin{cases} &\sf{coefficient \: of \: {x}^{7} }  \end{cases}\end{gathered}\end{gathered}

Concept used : -

\tt \: In \: the \: expansion \: of \: {(x + a)}^{n} , \: the \: general \: term \: isIntheexpansionof(x+a)

\large\underline{\bold{Solution :- }}

Now,

Given series is

\rm :\longmapsto\:\bigg(x^2-\dfrac{1}{x} \bigg)^{11}:⟼

The general term is given by

\rm :\longmapsto\: T_{(r + 1)} = \:^{11} C_r \: {( {x}^{2}) }^{11 - r} { \bigg(\dfrac{ - 1}{x} \bigg)}^{r}:⟼T </p><p>(r+1)

\rm :\longmapsto\: T_{(r + 1)} = \:^{11} C_r \: {x}^{22 - 2r} \dfrac{ {( - 1)}^{r} }{ {x}^{r} }:⟼T

\rm :\longmapsto\: T_{(r + 1)} = \:^{11} C_r \: {( - 1)}^{r} {(x)}^{22 - 3r} - - (1):⟼T

Now,

\rm :\longmapsto\:To \: find \: the \: coefficient \: of \: {x}^{7}:⟼To find th ecoefficient of x

\rm :\longmapsto\:put \: 22 - 3r = 7:⟼put22−3r=7

\rm :\longmapsto\:3r = 15:⟼3r=15

\rm :\longmapsto\:r \: = \: 5:⟼r=5

Now, Substitute r = 5, in equation (1) is

\rm :\longmapsto\: T_{(5 + 1)} = \:^{11} C_5 \: {( - 1)}^{5} {(x)}^{22 - 3 \times 5}:⟼T

\rm :\longmapsto\: T_{6} = \:^{11} C_5 \: {( - 1)}^{5} {(x)}^{7}:⟼T

\bf\implies \:coefficient \: of \: {x}^{7} = {( - 1)}^{5} \:^{11} C_5⟹coefficientofx

\rm :\longmapsto\:\:coefficient \: of \: {x}^{7} = - \dfrac{11 \times 10 \times 9 \times 8 \times 7}{5 \times 4 \times 3 \times 2}:⟼coefficient of n x

\rm :\longmapsto\:\:coefficient \: of \: {x}^{7} = \: - \: 462:⟼coefficient of x

Similar questions