Science, asked by hopelafave, 9 months ago

If continental crust and oceanic crust were able to flow like the material in the asthenosphere, how might the Earth be different? How would the processes of plate tectonics be different?

Answers

Answered by prabakarrenuka
0

Oceanic crust, the outermost layer of Earth’s lithosphere that is found under the oceans and formed at spreading centres on oceanic ridges, which occur at divergent plate boundaries.

A cross section of Earth's outer layers, from the crust through the lower mantle.

A cross section of Earth's outer layers, from the crust through the lower mantle.

Encyclopædia Britannica, Inc.

00:10

02:38

Oceanic crust

QUICK FACTS

RELATED TOPICS

Ocean

Earth’s crust

Pillow lava

Sheet flow

Oceanic crust is about 6 km (4 miles) thick. It is composed of several layers, not including the overlying sediment. The topmost layer, about 500 metres (1,650 feet) thick, includes lavas made of basalt (that is, rock material consisting largely of plagioclase [feldspar] and pyroxene). Oceanic crust differs from continental crust in several ways: it is thinner, denser, younger, and of different chemical composition. Like continental crust, however, oceanic crust is destroyed in subduction zones.

ADVERTISEMENT

The lavas are generally of two types: pillow lavas and sheet flows. Pillow lavas appear to be shaped exactly as the name implies—like large overstuffed pillows about 1 metre (3 feet) in cross section and 1 to several metres long. They commonly form small hills tens of metres high at the spreading centres. Sheet flows have the appearance of wrinkled bed sheets. They commonly are thin (only about 10 cm [4 inches] thick) and cover a broader area than pillow lavas. There is evidence that sheet flows are erupted at higher temperatures than those of the pillow variety. On the East Pacific Rise at 8° S latitude, a series of sheet flow eruptions (possibly since the mid-1960s) have covered more than 220 square km (85 square miles) of seafloor to an average depth of 70 metres (230 feet).

Below the lava is a layer composed of feeder, or sheeted, dikes that measures more than 1 km (0.6 mile) thick. Dikes are fractures that serve as the plumbing system for transporting magmas (molten rock material) to the seafloor to produce lavas. They are about 1 metre (3 feet) wide, subvertical, and elongate along the trend of the spreading centre where they formed, and they abut one another’s sides—hence the term sheeted. These dikes also are of basaltic composition. There are two layers below the dikes totaling about 4.5 km (3 miles) in thickness. Both of these include gabbros, which are essentially basalts with coarser mineral grains. These gabbro layers are thought to represent the magma chambers, or pockets of lava, that ultimately erupt on the seafloor. The upper gabbro layer is isotropic (uniform) in structure. In some places this layer includes pods of plagiogranite, a differentiated rock richer in silica than gabbro. The lower gabbro layer has a stratified structure and evidently represents the floor or sides of the magma chamber. This layered structure is called cumulate, meaning that the layers (which measure up to several metres thick) result from the sedimentation of minerals out of the liquid magma. The layers in the cumulate gabbro have less silica but are richer in iron and magnesium than the upper portions of the crust. Olivine, an iron-magnesium silicate, is a common mineral in the lower gabbro layer.

Crew members aboard a drilling ship inspecting a rock core during a scientific expedition that succeeded for the first time in drilling through the upper oceanic crust.

Crew members aboard a drilling ship inspecting a rock core during a scientific expedition that succeeded for the first time in drilling through the upper oceanic crust.

JOI Alliance/IODP

Get exclusive access to content from our 1768 First Edition with your subscription.

Subscribe today

The oceanic crust lies atop Earth’s mantle, as does the continental crust. Mantle rock is composed mostly of peridotite, which consists primarily of the mineral olivine with small amounts of pyroxene and amphibole.

Investigations Of The Oceanic Crust

Knowledge of the structure and composition of the oceanic crust comes from several sources. Bottom sampling during early exploration brought up all varieties of the above-mentioned rocks, but the structure of the crust and the abundance of the constituent rocks were unclear. Simultaneously, seismic refraction experiments enabled researchers to determine the layered nature of the oceanic crust. These experiments involved measuring the travel times of seismic waves generated by explosions (such as dynamite blasts) set off over distances of several tens of kilometres. The results of early refraction experiments revealed the existence of two layers beneath the sediment cover. More sophisticated experiments and analyses led to dividing these layers into two parts, each with a different seismic wave velocity, which increases with depth. The seismic velocity is a kind of fingerprint that can be attributed to a limited number of rock types. Sampled rock data and seismic results were combined to yield a model for the structure and composition of the crust.

Similar questions