if coordinate of A is (a² ,2a) and B is (1/a²,-2/a ) and S is (1,0) then find 1/SA + 1/SB = a) 2 b) 1/2 c) 1 d) 1/3
Answers
Answered by
4
Answer:
A(a²,2a),B(1/a²,-2/a),S(1,0)
We have to prove that,
1/SA+1/SB=1
Now,SA=√[(a²-1)²+(2a-0)²]
SA = √(a⁴-2a²+ 1+4a²)
SA = √(a⁴+2a²+ 1)
SA = √(a²+ 1)²
SA = a²+ 1
1/SA = 1/(a²+ 1)
Now,SB=√[1/a²-1)² + (-2a-0)²]
SB = √(1/a⁴-2/a² + 1)
SB = √(1/a⁴+ 2/a²+ 1)
SB = √(1/a² + 1)²
SB = 1/a² + 1
SB = (a² + 1) / a²
1/SB = a² / (a²+1)
1/SA + 1/SB = [1/(a²+1)] + [a²/(a²+1)]
1/SA + 1/SB = (1+a²) / (1+a²)
1/SA + 1/SB = 1
Hence Proved
Answered by
1
Answer:
SA=(1−a2)2+(−2a)2
=1+a4−2a2+4a2
=1+a4+2a2
=(1+a2)2
=(1+a2)
SB=(1−a21)2+(a2)2
=1+a41−a22+a24
=1+a41+a22
Similar questions
CBSE BOARD X,
14 hours ago
Math,
14 hours ago
Math,
1 day ago
Art,
1 day ago
English,
8 months ago
Computer Science,
8 months ago