Math, asked by maulik4412, 11 months ago

If α = cos⁻¹(3/5), β = tan⁻¹(1/3), where 0 < α, β < π/2 then (α - β) is equal to:
(A) sin⁻¹(9/5√10)
(B) cos⁻¹(9/5√10)
(C) tan⁻¹(9/5√10)
(D) tan⁻¹(9/14)

Answers

Answered by anshi60
6

{\red{\huge{\underline{\mathbb{Given :-}}}}}

α = cos⁻¹(3/5), β = tan⁻¹(1/3)

where 0 < α, β < π/2

{\purple{\huge{\underline{\mathbb{Answer:-}}}}}

α = cos⁻¹(3/5)

↪ α = tan⁻¹(4/3)

α - β = tan⁻¹(4/3)- tan⁻¹(1/3)

we know that

 \tan {}^{ - 1} (x)  -  \tan {}^{ - 1} (y) =  \tan {}^{ - 1} ( \frac{x  - y}{1 + xy} )

use this forumla

 \alpha   - \beta  =  \tan {}^{ - 1} ( \frac{ \frac{4}{3}  -  \frac{1}{3} }{1 +  \frac{4}{3}  \times  \frac{1}{3} } )

α - β = tan⁻¹(9/13)

convert tan inverse term in sin inverse

 \alpha  -  \beta  =  \sin {}^{ - 1} ( \frac{9}{5 \sqrt{10} } )

correct option a)

follow me

Answered by Anonymous
1

Step-by-step explanation:

If α = cos⁻¹(3/5), β = tan⁻¹(1/3), where 0 < α, β < π/2 then (α - β) is equal to:

(A) sin⁻¹(9/5√10)

hope this helps you

give 20 thx to my answers to be inboxed by me

Similar questions