Math, asked by TbiaSupreme, 1 year ago

If α=cos⁻¹(4/5),β=tan⁻¹(2/3),α,β ∈(0,π/2),then α-β=.......,Select Proper option from the given options.
(a) sin⁻¹2/√13
(b) tan⁻¹(1/18)
(c) cos⁻¹(1/5√3)
(d) sin⁻¹(6/5√13)

Answers

Answered by hukam0685
0
Dear Student,

Answer:cos⁻¹(18/5√13)

sin⁻¹(1/5√13)

tan⁻¹(1/6)

Solution:


 \alpha  =  {cos}^{ - 1}  \frac{4}{5}  \\  \\  \beta  =  { \tan }^{ - 1}  \frac{2}{3}  \\  \\  \alpha  -  \beta  = {cos}^{ - 1}  \frac{4}{5} - { \tan }^{ - 1}  \frac{2}{3} \\  since \:  \:  \:  {tan}^{ - 1}  =  {cos}^{ - 1} ( \frac{1}{ \sqrt{1 +  {x}^{2} } } ) \\  \\  \alpha  -  \beta   =  {cos}^{ - 1}  \frac{4}{5}  -  {cos}^{ - 1} ( \frac{1}{ \sqrt{1 +  \frac{4}{9} } }  \\  \\  =  {cos}^{ - 1}  \frac{4}{5}  -  {cos}^{ - 1} ( \frac{1}{ \sqrt{ \frac{9 + 4}{9} } } )\\  = {cos}^{ - 1}  \frac{4}{5}  -  {cos}^{ - 1} ( \frac{3}{ \sqrt{ 13 } } )\\ \\   {cos}^{ - 1} x -   {cos}^{ - 1} y =  {cos}^{ - 1} (xy +  \sqrt{1 -  {x}^{2} } ) \sqrt{1 -  {y}^{2} } ) \\  \\  =  {cos}^{ - 1} ( \frac{12}{5 \sqrt{13} }  +  \sqrt{1 -  { (\frac{4}{5} )}^{2} } ) \sqrt{1 -  {( \frac{3}{ \sqrt{13}) } }^{2} } ) \\  \\  =  {cos}^{ - 1} (  \frac{12}{5 \sqrt{13} }  +  \frac{6}{5 \sqrt{13} } ) \\  \\   \alpha  -  \beta =  {cos}^{ - 1} ( \frac{18}{5 \sqrt{13} } )
there might some mistakes in given options.

if we convert cos inverse in terms of sin inverse
ie
 {cos}^{ - 1} x =  {sin}^{ - 1}  \sqrt{1 -  {x}^{2} }  \\ {cos}^{ - 1} ( \frac{18}{5 \sqrt{13} } =  {sin}^{ - 1}  \sqrt{1 -   \frac{324}{325} }  \\ \\  \\   \alpha  -  \beta =  {sin}^{ - 1} ( \frac{1}{5 \sqrt{13} } )
or in terms of tan answer would be tan⁻¹(1/6)

hope it helps you
Similar questions