Math, asked by TbiaSupreme, 1 year ago

tan(2tan⁻¹1/5-π/4)=.......,Select Proper option from the given options.
(a)14/33
(b) -7/17
(c) 17/7
(d) 24/25

Answers

Answered by rohitkumargupta
1

HELLO DEAR,



tan (2tan-¹1/5 - π/4)



tan(2tan-¹1/5 - tan-¹ 1)



[as 2tan-¹x = tan-¹ {2*x/(1 - x²)} ]



tan[tan-¹(2*1/5)/{1 - (1/5)²} - tan-¹ 1]



tan[tan-¹ (2/5)/(24/25) - tan-¹1]



tan[tan-¹ 5/12 - tan-¹1]



[as tan-¹x - tan-¹y = tan-¹ {(x + y)/(1 - x*y)} ]



tan[tan-¹ {(5/12 + 1) /(1 - 5/12)}



tan[tan-¹ {(5 + 12)/12}/{(12 - 5)/12}



(17/12)/(7/12)



17/7



hence, option (c) is correct




I HOPE ITS HELP YOU,


THANKS

Answered by hukam0685
1
Dear Student,

Answer:Option C (17/7)

Solution:
 {tan}^{ - 1} 1 =  \frac{\pi}{4}  \\  \\ =  tan(2 {tan}^{ - 1}  \frac{1}{5}  -  {tan}^{ - 1} 1) \\  \:  \:  since \:  \:  \: 2 {tan}^{ - 1} x =  {tan}^{ - 1} ( \frac{2x}{1 -  {x}^{2} } ) \\  \\ 2 {tan}^{ - 1} ( \frac{1}{5} ) =  {tan}^{ - 1} ( \frac{ \frac{2}{5} }{1 -   \frac{1}{25} } ) \\  \\  =  {tan}^{ - 1} ( \frac{5}{12} ) \\  \\  {tan }^{ - 1} x +  {tan}^{ - 1} y =  {tan}^{ - 1} ( \frac{x + y}{1 - xy} ) \\  \\  = {tan }^{ - 1}  \frac{5}{12}  +  {tan}^{ - 1} 1 =  {tan}^{ - 1} ( \frac{ \frac{5}{12}  + 1}{1 -  \frac{5}{12} } ) \\  \\  =  {tan}^{ - 1} ( \frac{17}{7} ) \\  \\ now \:  \\ tan \:  \: ({tan}^{ - 1} ( \frac{17}{7} )) \\  =  \frac{17}{7}
hope it helps you
Similar questions