If cosθ=(2√mn)/(m+n),find the value of sinθ Answer is (m-n)/m+n
Answers
Answered by
22
Cos θ = Base / hypotenuse = ( 2√mn)/(m+n)
Applying PYTHAGORA'S THEOREM,
Hypotenuse^2 = Perpendicular ^2 + Base ^2
( m + n ) ^2 = P^2 + ( 2√mn) ^2
m ^2 + n ^2 + 2mn = P^2 + 4 mn.
m ^2 + n ^2 + 2mn - 4 mn = P^2
P^2 = m^2 + n^2 - 2 mn
P^2 = ( m - n ) ^2
P = ( m - n )
Sin θ = Perpendicular / Hypotenuse
Sin θ => ( m - n ) / ( m + n )
Applying PYTHAGORA'S THEOREM,
Hypotenuse^2 = Perpendicular ^2 + Base ^2
( m + n ) ^2 = P^2 + ( 2√mn) ^2
m ^2 + n ^2 + 2mn = P^2 + 4 mn.
m ^2 + n ^2 + 2mn - 4 mn = P^2
P^2 = m^2 + n^2 - 2 mn
P^2 = ( m - n ) ^2
P = ( m - n )
Sin θ = Perpendicular / Hypotenuse
Sin θ => ( m - n ) / ( m + n )
Answered by
8
Answer:
hope it helped u mate....
Attachments:
Similar questions
Geography,
6 months ago
Physics,
6 months ago
Math,
1 year ago
Science,
1 year ago
Political Science,
1 year ago