Math, asked by ketanagra123, 11 months ago

If cosθ = 2p / p²+1,(p ≠ 0)then sinθ is equal to:
1. 2p / p² +1
2. p²+1/ p²-1
3. 2p / p²-1
4. p²-1/2p

Answers

Answered by ashishks1912
2

GIVEN :

If cos\theta = \frac{2p}{ p^2+1}, (p\neq 0)

TO FIND :

The value of sin\theta

SOLUTION :

Given that cos\theta = \frac{2p}{ p^2+1}, (p\neq 0)

The trignometric formula is given by :

sin^2x=1-cos^2x

Substitute the value of cos\theta = \frac{2p}{p^2+1}, (p\neq 0) in the above formula we get

sin^2\theta =1-(\frac{2p}{p^2+1})^2, (p\neq 0)

=1-\frac{(2p)^2}{(p^2+1)^2}

By using the property of exponents of power rule :

(ab)^m=a^mb^m

By using the  Algebraic identity :

(a+b)^2=a^2+2ab+b^2

=1-\frac{2^2(p)^2}{(p^2)^2+2(p^2)(1)+(1)^2}

=1-\frac{4p^2}{p^4+2p^2+1}

=\frac{p^4+2p^2+1-4p^2}{p^4+2p^2+1}

=\frac{p^4-2p^2+1}{p^4+2p^2+1}

By using the  Algebraic identities :

(a+b)^2=a^2+2ab+b^2

(a-b)^2=a^2-2ab+b^2

sin^2\theta=\frac{(p^2-1)^2}{(p^2+1)^2} , (p\neq 0)

Taking square root on both sides we get,

sin\theta=\frac{p^2-1}{p^2+1} , (p\neq 0)

∴ option 2) \frac{p^2-1}{p^2+1} , (p\neq 0) is correct.

∴ the value of sin\theta is \frac{p^2-1}{p^2+1} , (p\neq 0)

Similar questions