Math, asked by TbiaSupreme, 1 year ago

If cos(2tan⁻¹x)=1/2, then the value of x is.......,Select Proper option from the given options.
(a) 1/√3
(b) 1-√3
(c) 1- 1/√3
(d) √3

Answers

Answered by hukam0685
2
Dear Student,

Answer:Option a is correct. x= 1/√3

Solution:

1) First convert 2tan⁻¹x into cos⁻¹x, so that cos cancels cos⁻¹x
2 {tan}^{ - 1} x =  {cos}^{ - 1} ( \frac{1 -  {x}^{2} }{1 +  {x}^{2} } ) \\  \\  \\ cos (\: 2 {tan}^{ - 1} x) =  \\  \\ cos( {cos}^{ - 1} ( \frac{1 -  {x}^{2} }{1 +  {x}^{2} } ) =  \frac{1}{2}  \\  \\ ( \frac{1 -  {x}^{2} }{1 +  {x}^{2} } ) =  \frac{1}{2}  \\ \\ 2 - 2 {x}^{2}  = 1 +  {x}^{2}  \\  \\  - 2 {x}^{2}  -  {x}^{2}  = 1 - 2 \\  \\  - 3 {x}^{2}  =  - 1 \\ 3 {x}^{2}  = 1 \\  {x}^{2}  =  \frac{1}{3}  \\  \\ x =  +  -  \sqrt{ \frac{1}{3} }  \\  \\ x =  -  \frac{1}{ \sqrt{3} }  \\  \\ x =  -  \frac{1}{ \sqrt{3} }
So, one of the value is 1/√3

Option a is correct

Hope it helps you.
Answered by abhi178
1
we have to find the value of x where cos(2tan^{-1}x)=1/2.

Let 2tan^{-1}x=A
tanA/2 = x
we know, cos2\theta=\frac{1-tan^2\theta}{1+tan^2\theta}

so, cosA = (1 - tan²A/2)/(1 + tan²A/2)

= (1 - x²)/(1 + x²)

so, \frac{1-x^2}{1+x^2}=cosA......(1)

now, cos(2tan^{-1}x)=1/2

=> cosA = 1/2

from equation (1),

=> (1 - x²)/(1 + x²) = 1/2

=> 2(1 - x²) = (1 + x²)

=> 2 - 1 = 3x²

=> x = ±1/√3

hence option (a) is correct.

Similar questions